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Abstract—A central theme in distributed network algorithms
concerns understanding and coping with the issue of locality.
Despite considerable progress, research efforts in this direction
have not yet resulted in a solid basis in the form of a funda-
mental computational complexity theory for locality. Inspired by
sequential complexity theory, we focus on a complexity theory for
distributed decision problems. In the context of locality, solving a
decision problem requires the processors to independently inspect
their local neighborhoods and then collectively decide whether a
given global input instance belongs to some specified language.

We consider the standard LOCAL model of computation and
define LD(t) (for local decision) as the class of decision problems
that can be solved in t communication rounds. We first study
the intriguing question of whether randomization helps in local
distributed computing, and to what extent. Specifically, we define
the corresponding randomized class BPLD(t, p, q), containing all
languages for which there exists a randomized algorithm that
runs in t rounds, accepts correct instances with probability at
least p and rejects incorrect ones with probability at least q.
We show that p2 + q = 1 is a threshold for the containment
of LD(t) in BPLD(t, p, q). More precisely, we show that there
exists a language that does not belong to LD(t) for any t = o(n)
but does belong to BPLD(0, p, q) for any p, q ∈ (0, 1] such that
p2 + q ≤ 1. On the other hand, we show that, restricted to
hereditary languages, BPLD(t, p, q) = LD(O(t)), for any function
t and any p, q ∈ (0, 1] such that p2 + q > 1.

In addition, we investigate the impact of non-determinism
on local decision, and establish some structural results inspired
by classical computational complexity theory. Specifically, we
show that non-determinism does help, but that this help is
limited, as there exist languages that cannot be decided non-
deterministically. Perhaps surprisingly, it turns out that it is the
combination of randomization with non-determinism that enables
to decide all languages in constant time. Finally, we introduce the
notion of local reduction, and establish some completeness results.

Index Terms—Local distributed algorithms; local decision;
nondeterminism; randomized algorithms; oracles

I. INTRODUCTION

A. Motivation

Distributed computing concerns a collection of processors
that collaborate in order to achieve some global task. With
time, two main disciplines have evolved in the field. One
discipline deals with timing issues, namely, uncertainties due
to asynchrony (the fact that processors run at their own speed,
and possibly crash), and the other concerns topology issues,
namely, uncertainties due to locality constraints (the lack of
knowledge about far away processors). Studies carried out
by the distributed computing community within these two
disciplines were to a large extent problem-driven. Indeed,

several major problems considered in the literature concern
coping with one of the two uncertainties. For instance, in
the asynchrony-discipline, Fischer, Lynch and Paterson [13]
proved that consensus cannot be achieved in the asynchronous
model, even in the presence of a single fault, and in the
locality-discipline, Linial [31] proved that (∆ + 1)-coloring
cannot be achieved locally (i.e., in a constant number of
communication rounds), even in the ring network.

One of the significant achievements of the asynchrony-
discipline was its success in establishing unifying theories in
the flavor of computational complexity theory. Some central
examples of such theories are failure detectors [6], [7] and
the wait-free hierarchy (including Herlihy’s hierarchy) [19]. In
contrast, despite considerable progress, the locality-discipline
still suffers from the absence of a solid basis in the form of
a fundamental computational complexity theory. Obviously,
defining some common cost measures (e.g., time, message,
memory, etc.) enables us to compare problems in terms of their
relative cost. Still, from a computational complexity point of
view, it is not clear how to relate the difficulty of problems
in the locality-discipline. Specifically, if two problems have
different kinds of outputs, it is not clear how to reduce one to
the other, even if they cost the same.

Inspired by sequential complexity theory, we focus on
decision problems, in which one is aiming at deciding whether
a given global input instance belongs to some specified lan-
guage. In the context of distributed computing, each processor
must produce a boolean output, and the decision is defined by
the conjunction of the processors’ outputs, i.e., if the instance
belongs to the language, then all processors must output “yes”,
and otherwise, at least one processor must output “no”.
Observe that decision problems provide a natural framework
for tackling fault-tolerance: the processors have to collectively
check whether the network is fault-free, and a node detecting
a fault raises an alarm. In fact, many natural problems can be
phrased as decision problems, like “is there a unique leader in
the network?” or “is the network planar?”. Moreover, decision
problems occur naturally when one is aiming at checking the
validity of the output of a computational task, such as “is
the produced coloring legal?”, or “is the constructed subgraph
an MST?”. Construction tasks such as exact or approximated
solutions to problems like coloring, MST, spanner, MIS,
maximum matching, etc., received enormous attention in the
literature (see, e.g., [5], [28], [29], [31], [34], [32], [33], [40]),
yet the corresponding decision problems have hardly been



considered.
The purpose of this paper is to investigate the nature of

local decision problems. Decision problems seem to provide a
promising approach to building up a distributed computational
theory for the locality-discipline. Indeed, as we will show,
one can define local reductions in the framework of decision
problems, thus enabling the introduction of complexity classes
and notions of completeness.

We consider the LOCAL model [38], which is a standard
distributed computing model capturing the essence of locality.
In this model, processors are woken up simultaneously, and
computation proceeds in fault-free synchronous rounds during
which every processor exchanges messages of unlimited size
with its neighbors, and performs arbitrary computations on
its data. Informally, let us define LD(t) (for local decision)
as the class of decision problems that can be solved in t
communication rounds in the LOCAL model. Of special
interest is the case where t is constant, but in general we
view t as a function of the input, i.e., as a function of the
input graph and the individual input of each node. Note that
in the LOCAL model, every decidable decision problem can
be solved in n communication rounds, where n denotes the
number of nodes in the input graph.

Some decision problems fall trivially in LD(O(1)) (e.g., “is
the given coloring a legal coloring?”, “do the selected nodes
form an MIS?”, etc.), while some others can easily be shown
to be outside LD(t) for any t = o(n) (e.g., “is the network
planar?”, “is there a unique leader?”, etc). In contrast to the
above examples, there are some languages whose membership
in LD(t) is unclear, even for t = O(1). To elaborate on this,
consider the particular case where it is required to decide
whether the network belongs to some specified family F of
graphs. If this question can be decided in a constant number of
communication rounds, then this means, informally, that the
family F can somehow be characterized by relatively simple
conditions. For example, a family F of graphs that can be
characterized as consisting of all graphs having no subgraph
from C, where C is some specified finite set of graphs, is
obviously in LD(O(1)). However, the question of whether a
family of graphs can be characterized as above is often non-
trivial. For example, characterizing cographs as precisely the
graphs with no induced P4, attributed to Seinsche [42], is not
easy, and requires nontrivial usage of modular decomposition.

B. Our contributions

◦ Impact of randomization: We first study the impact of
randomization on local decision, and the question we focus
on is whether randomization helps and to what extent. For
p, q ∈ (0, 1], let us define BPLD(t, p, q) as the class of all
distributed languages that can be decided by a randomized
distributed algorithm that runs in t communication rounds,
and produces correct answers on legal (respectively, illegal)
instances with probability at least p (resp., q). We first ob-
serve that LD(t) ⊂ BPLD(t, p, q) for p and q such that

p2 + q ≤ 1. Indeed, for such p and q, there exists a
language L∗ ∈ BPLD(0, p, q), such that L∗ /∈ LD(t), for
all t = o(n). It turns out that this choice of p and q is not
coincidental. Indeed, we show that L∗ /∈ BPLD(t, p, q), for
every t = o(n), and every p and q such that p2 + q > 1.
In fact, our main result is considerably more general: we
prove that, restricted to hereditary languages, if p2 + q > 1,
then BPLD(t, p, q) actually collapses into LD(O(t)), for any
function t, yielding BPLD(t, p, q) = LD(O(t)). These results
suggest that p2 + q = 1 may well be a sharp threshold
distinguishing the deterministic case from the randomized one.

◦ Impact of non-determinism: In the second part of the
paper, we investigate the impact of non-determinism on local
decision, and establish some structural results inspired by
classical computational complexity theory. We start by estab-
lishing that non-determinism does help, but that this help is
limited, as there exist languages that cannot be decided non-
deterministically. Specifically, to show that non-determinism
helps local decision, we prove that the class NLD(t) (the non-
deterministic version of LD(t)) strictly contains LD(t). More
precisely, we show that there exists a language in NLD(O(1))
which is not in LD(t) for every t = o(n). On the other hand,
we also show that NLD(t) does not capture all (decidable)
languages, for t = o(n). Indeed we prove that there exists a
language not in NLD(t) for every t = o(n). Specifically, this
language is GraphSize = {(G, k) s.t. |V (G)| = k}, which
requires the nodes to decide whether the input graph has k
nodes, where k is given as input to every node.

Perhaps surprisingly, it turns out that it is the combination
of randomization with non-determinism that enables to de-
cide all languages in constant time. To establish this result,
we define the randomized version BPNLD of NLD, in the
same way BPLD is defined from LD. Let BPNLD(t) =
∪p2+q≤1BPNLD(t, p, q). We prove that BPNLD(O(1)) con-
tains all languages. To sum up, we get for every t = o(n), we
have

LD(t) ⊂ NLD(t) ⊂ BPNLD(O(1)) = All

where All is the set of (sequentially decidable) distributed
languages. Alternatively, by considering oracles provid-
ing global information to the nodes, we also show that
NLDGraphSize(O(1)) = All where NLDGraphSize(O(1)) is
NLD(O(1)) assuming that each node can access an oracle that
returns the number of nodes in the input graph.

Finally, we introduce the notion of many-one local reduc-
tion, and establish some completeness results. We show that
there exists a problem, called Cover, which is, in a sense, the
most difficult decision problem. That is, we show that Cover
is BPNLD(O(1))-complete. Interestingly, a small relaxation of
Cover, called Containment, turns out to be NLD(O(1))-
complete.

C. Related work

Locality issues have been thoroughly studied in the liter-
ature, via the analysis of various construction problems, in-
cluding coloring and MIS [2], [5], [26], [29], [31], [34], [37],



MST [28], [39], matching [20], [32], [33], [43], dominating
set [27], [30], spanners [9], [12], [40], etc. For some problems
(e.g., coloring [5], [26], [37]), there are still large gaps between
the best known results on specific families of graphs (e.g.,
bounded degree graphs) and on arbitrary graphs.

The question of what can be computed in a constant number
of communication rounds was posed in the seminal work of
Naor and Stockmeyer [36]. In particular, that paper considers
a subclass of LD(O(1)), called LCL, which is essentially
LD(O(1)) restricted to languages involving graphs of constant
maximum degree and processor inputs taken from a set of
constant size, and studies the question of how to compute in
O(1) rounds the constructive versions of decision problems
in LCL. The paper provides some beautiful general results. In
particular, it shows that if there exists a randomized algorithm
that constructs a solution for a problem in LCL in O(1) rounds,
then there is also a deterministic algorithm constructing a
solution for that problem in O(1) rounds. Unfortunately, the
proof of this result relies heavily on the definition of LCL.
Indeed, the constant bound constraints on the degrees and input
sizes enable a proof based on a clever use of Ramsey theory.
It is thus not clear whether it is possible to extend this result
to all languages in LD(O(1)).

The question of whether randomization helps in decreasing
the locality parameter of construction problems has been the
focus of numerous studies. To date, there exists evidence that,
for some problems at least, randomization does not help. For
instance, [35] proves this for 3-coloring the ring. In fact,
for low degree graphs, the gaps between the efficiencies of
the best known randomized and deterministic algorithms for
problems like MIS, (∆ + 1)-coloring, and maximal matching
are very small. On the other hand, for graphs of arbitrarily
large degrees, there seem to be indications that randomization
does help, at least in some cases. For instance, (∆ + 1)-
coloring can be randomly computed in expected O(log n)
communication rounds on n-node graphs [2], [34], whereas the
best known deterministic algorithm for this problem performs
in 2O(

√
logn) rounds [37]. (∆ + 1)-coloring results whose

performance is expressed also in terms of the maximum degree
∆ illustrate this phenomenon as well. Specifically, [41] shows
that (∆ + 1)-coloring can be randomly computed in expected
O(log ∆ +

√
log n) communication rounds, whereas the best

known deterministic algorithm performs in O(∆ + log∗ n)
rounds [5], [26].

Recently, several results were established concerning de-
cision problems in distributed computing. For example, [8]
and [21] study specific decision problems in the CONGEST
model. (In contrast to the LOCAL model, this model assumes
that the message size is bounded by O(log n) bits, hence
dealing with congestion is the main issue.) Specifically, tight
bounds are established in [21] for the time and message
complexities of the problem of deciding whether a given
subgraph is an MST, and time lower bounds for many other
subgraph-decision problems (e.g., spanning tree, connectivity)
are established in [8]. Decision problems have received recent
attention in the asynchrony discipline too, in the framework

of wait-free computing [17].
The theory of proof-labeling schemes [24], [18], [22], [23]

was designed to tackle the issue of locally verifying (with the
aid of a “proof”, i.e., a certificate, at each node) solutions to
problems that cannot be decided locally (e.g.,“is the given sub-
graph a spanning tree of the network?”, or, “is it an MST?”).
Investigations in this framework mostly focus on the minimum
size of the certificate necessary so that verification can be
performed in a single round [18], [22], [24], or in t rounds
[23]. Hence, the model of proof-labeling schemes has some
resemblance to our definition of the class NLD. The notion of
proof-labeling schemes also has interesting similarities with
the notions of local detection [1], local checking [4], or silent
stabilization [11], which were introduced in the context of self-
stabilization [10]. The notion of NLD seems to be also related
to the theory of lifts [3].

The use of oracles that provide information to nodes was
studied intensively in the context of distributed construction
tasks. For instance, this framework, called local computation
with advice, was studied in [16] for MST construction, in [15]
for 3-coloring a cycle, and in [14] for broadcast and wake up.

II. DECISION PROBLEMS AND COMPLEXITY CLASSES

Model of computation: Let us first recall some basic no-
tions in distributed computing. We consider the LOCAL
model [38], which is a standard model capturing the essence
of locality. In this model, processors are assumed to be nodes
of a network G, provided with arbitrary distinct identities.
All processors are woken up simultaneously, and, initially, a
processor v ∈ V (G) is aware only of it own identity Id(v) and,
possibly, of some local input x(v). Computation proceeds in
fault-free synchronous rounds. At each round of an algorithm
A, every processor v exchanges messages of unrestricted size
with its neighbors in G, and performs computations on its data.
The model does not impose any restriction on the amount of
individual computation performed at each node. To sum up, in
each round r during the execution of a distributed algorithmA,
every processor v: (1) receives messages from its neighbors,
(2) performs individual computations, and (3) sends messages
to its neighbors. After a number of rounds (that may depend
on the network G and may vary among the processors, simply
because nodes have different identities, potentially different
inputs, and are typically located at non-isomorphic positions
in the network), every processor v terminates and generates
its output.

Consider an algorithm A running in a network G with input
x and identity assignment Id. (An identity assignment for a
graph G is an assignment of distinct integers to the nodes
of G.) The output of processor v in this scenario is denoted
by outA(G, x, Id, v) (or simply out(v) when the parameters are
clear from the context). The running time of a node v, denoted
by TA,v , is the number of communication rounds until v
outputs. Note that TA,v may depend on the structure of G, the
global input x, and the identity assignment Id. The algorithm’s
running time, denoted by TA, is the number of rounds until
all processors terminate. Again, TA may depend on (G, x, Id),



and TA(G, x, Id) = maxv∈V (G) TA,v(G, x, Id). Let t be a
function of the triples (G, x, Id), we say that an algorithm
A has running time at most t, if TA(G, x, Id) ≤ t(G, x, Id),
for every (G, x, Id). We shall give special attention to the case
where t represents a constant function. Note that, in general,
given (G, x, Id), the nodes may not be aware of t(G, x, Id)
because it requires the global knowledge of (G, x, Id). On the
other hand, if t = t(G, x, Id) is happening to be known by
every node, then, w.l.o.g., one can assume that an algorithm
running in time at most t operates at each node v in two stages:
(a) collect all information available in the t-neighborhood of
v (i.e., the ball BG(v, t) of radius t around v in G), including
input values, identities, and network structure; (b) compute
the output locally at v based on this information. In the case
of a randomized algorithm, both the running time of a node,
and the algorithm’s running time are random variables whose
values depend on the results of mutually independent random
coin flips performed at all nodes.

Local decision (LD): We now refine some of the above
concepts. Obviously, a distributed algorithm that runs on a
graph G operates separately on each connected component of
G, and nodes of a component G′ of G cannot distinguish the
underlying graph G from G′. For this reason, we consider
connected graphs only.

Definition 2.1: An instance is a pair (G, x) where G is a
connected graph, and every node v ∈ V (G) is assigned as its
local input a binary string x(v) ∈ {0, 1}∗. (In some problems,
the local input of every node is empty, i.e., x(v) = ε for every
v ∈ V (G), where ε denotes the empty binary string.)

Since an undecidable collection of instances remains un-
decidable in the distributed setting too, we consider only
decidable collections of instances. Formally, we define the
following.

Definition 2.2: A distributed language is a decidable col-
lection L of instances.

In general, there are several possible ways of representing an
instance of a distributed language corresponding to standard
distributed computing problems. A natural type of decision
problems involves getting as input an x claimed to be the
output of some common distributed computing problem Π,
and deciding whether it is indeed a legal output for Π. Some
examples for problems are given below.
• Consensus = {(G, (x1, x2)) s.t. ∃u ∈ V (G),∀v ∈
V (G), x2(v) = x1(u)} consists of all instances such that
all nodes agree on a value proposed by one of them.

• k − Coloring = {(G, x) s.t. ∀v ∈ V (G), x(v) ∈
{1, 2, · · · , k}, and ∀w ∈ N(v), x(v) 6= x(w)} where
N(v) denotes the (open) neighborhood of v, that is, all
nodes at distance exactly 1 from v.

• MIS = {(G, x) s.t. S = {v ∈ V (G) | x(v) =
1} forms a maximal independent set}.

• Tree = {(G, ε); G is a tree};
• Planar = {(G, ε); G is a planar graph};
Let L be a distributed language. We say that a distributed

algorithm A decides L iff for every instance (G, x), every
node of G eventually terminates and outputs “yes” or “no”,
satisfying the following decision rules:
• If (G, x) ∈ L, then for every identity assignment Id,

outA(G, x, Id, v) = “yes” for every node v ∈ V (G);
• If (G, x) /∈ L, then for every identity assignment Id,

outA(G, x, Id, v) =“no” for at least one node v ∈ V (G).
We are now ready to define one of our main subjects of

interest, the class LD(t), for local decision.

Definition 2.3: Let t be a function of triplets (G, x, Id).
LD(t) is the class of all distributed languages that can be
decided by a distributed algorithm that runs in at most t
communication rounds.

For instance, we have, k − Coloring ∈ LD(1) for every
constant k, and MIS ∈ LD(1). On the other hand, it is not
hard to see that languages such as Consensus, Tree, and
Planar are not in LD(t), for any t = o(n).

In what follows, for every function t, we define LD(O(t)) =⋃
c>0 LD(c · t). Hence, for a distributed language L and a

function t, L ∈ LD(O(t)) if and only if there exists a constant
c such that L ∈ LD(c · t).

Non-deterministic local decision (NLD): A distributed verifi-
cation algorithm is a distributed algorithm A that gets as input,
in addition to an instance (G, x), a global certificate vector y,
i.e., every node v of a graph G gets as input two binary strings,
an input x(v) ∈ {0, 1}∗ and a certificate y(v) ∈ {0, 1}∗. A
verification algorithm A verifies L if and only if for every
instance (G, x), the following hold:
• If (G, x) ∈ L, then there exists a certificate y such that,

for every id-assignment Id, outA(G, (x, y), Id, v) =“yes”
for all v ∈ V (G);

• If (G, x) /∈ L, then for every certificate y, and for every
id-assignment Id, outA(G, (x, y), Id, v) =“no” for at least
one node v ∈ V (G).

One motivation for studying the non-determinism in the
above sense comes from settings in which one must perform
local verifications repeatedly. In such cases, one can afford
to have a relatively “wasteful” preliminary step in which a
certificate is computed for each node. Using these certificates,
local verifications can then be performed very fast (see [22],
[24] for more details regarding such applications). Indeed,
the definition of a verification algorithm finds similarities
with the notion of proof-labeling schemes discussed therein.
Informally, in a proof-labeling scheme, the construction of a
“good” certificate y for an instance (G, x) ∈ L may depend
also on the given id-assignment. Since the question of whether
an instance (G, x) belongs to a language L is independent
from the particular id-assignment, we prefer to let the “good”
certificate y depend only on the instance. In other words,
as defined above, a verification algorithm operating on an
instance (G, x) ∈ L and a “good” certificate y must lead all
nodes to say “yes” regardless of the id-assignment. We now
define the class NLD(t), for nondeterministic local decision.
(Our terminology is by direct analogy to the class NP in



sequential computational complexity.)

Definition 2.4: Let t be a function of triplets (G, x, Id).
NLD(t) is the class of all distributed languages that can be
verified in at most t communication rounds.

Bounded-error probabilistic local decision (BPLD): A ran-
domized distributed algorithm is a distributed algorithm A that
enables every node v, at any round r during the execution, to
toss a certain number of random bits. More specifically, in
this paper, randomized computation is tackled by considering
Monte Carlo algorithms. Recall that, in sequential computing,
a Monte Carlo algorithm is a randomized algorithm whose run-
ning time is deterministic, but whose output may be incorrect
with a certain probability. We just extend this concept to the
distributed setting, by focussing on distributed algorithms that
use randomization but whose running time are deterministic.
Actually, we are more liberal, and allow the running time to
depend on the values of the random bits flipped by the nodes,
under the simple restriction that the maximum execution time
Tv of node v, over all the values of the random bits flipped by
all nodes, is deterministic (i.e., it depends only of the actual
instance (G, x) and id-assignment Id).

For p, q ∈ (0, 1], we say that a randomized distributed
algorithm A is a (p, q)-decider for L, or, that it decides L
with “yes” success probability p, and “no” success probability
q, if and only if for every instance (G, x), every node of
G eventually terminates and outputs “yes” or “no”, and the
following properties are satisfied:
• If (G, x) ∈ L then, for every id-assignment Id,
Pr[∀v ∈ V (G), outA(G, x, Id, v) = “yes” ] ≥ p,

• If (G, x) /∈ L then, for every id-assignment Id,
Pr[∃v ∈ V (G), outA(G, x, Id, v) = “no”] ≥ q,

where the probabilities in the above definition are taken over
all possible coin tosses performed by the nodes. The running
time of v performing a (p, q)-decider depends on the triple
(G, x, Id) and on the results of the coin tosses. In the context
of randomized algorithm, Tv(G, x, Id) denotes the maximal
running time of v over all possible coin tosses, for instance
(G, x) and id-assignment Id. Then, as for non-probabilistic
cases, the running time T of the (p, q)-decider is the maximum
of the running time of the nodes. Again, by definition of
the distributed Monte-Carlo algorithm, both Tv and T are
deterministic. We define the class BPLD(t, p, q), for bounded-
error probabilistic local decision, as follows.

Definition 2.5: For p, q ∈ (0, 1] and a function t of
triplets (G, x, Id), BPLD(t, p, q) is the class of all distributed
languages that have a randomized distributed (p, q)-decider
running in time at most t (i.e., can be decided in time at most
t by a randomized distributed algorithm with “yes” success
probability p and “no” success probability q).

III. A SHARP THRESHOLD FOR RANDOMIZATION

The objective of this section is to tackle the question of
whether randomization helps (local) distributed computing,
and to which extent. Recall that [36] investigates the question

of whether randomization helps for constructing in constant
time a solution for a problem in LCL⊂ LD(O(1)). We stress
that the technique used in [36] for tackling this question relies
heavily on the definition of LCL, specifically, that only graphs
of constant degree and of constant input size are considered.
Hence it is not clear whether the technique of [36] can be
useful for our purposes, as we impose no such assumptions
on the degrees or input sizes. We also note that, although
it seems at first glance that Lovász local lemma might have
been helpful here, we could not effectively apply it in our
proof. Instead, we use a completely different approach. Let us
start by a simple observation. Consider the following language.

Definition 3.1: At-Most-One-Selected (AMOS) =
{(G, x) s.t. ‖ x ‖1 ≤ 1}. Namely, AMOS consists
of all instances containing at most one selected node (i.e., with
input 1), with all other nodes unselected (having input 0).

By considering the n-node path, one can easily check that
this language is not in LD(t), for any t = o(n). (This
holds even if one assumes that the selected nodes can only
be the two extremities of the path.) Yet, we claim that
AMOS ∈ BPLD(0, p, q) for every p and q such that p2 +q ≤ 1.
Indeed, for such p and q, we can design the following simple
randomized algorithm that runs in time zero: every unselected
node says “yes” with probability 1, and every selected node
says “yes” with probability p. If the instance has at most
one selected node then all nodes say “yes” with probability
at least p. On the other hand, if there are at least k ≥ 2
selected nodes, that is, if the instance is not in the language,
then the probability that some node says “no” is at least
1− pk ≥ 1− p2 ≥ q. Thus we get the following:

Theorem 3.2: For p and q such that p2 +q ≤ 1, there exists
a language L ∈ BPLD(0, p, q), such that L /∈ LD(t), for any
t = o(n).

We show that, at least for a large class of languages, called
hereditary languages, the bound p2 +q = 1 is actually a sharp
threshold. Consider some graph G, and a subset U of the
nodes of G, i.e., U ⊆ V (G). Let G[U ] denote the subgraph
of G induced by the nodes in U . Given an instance (G, x),
let x[U ] denote the input x restricted to the nodes in U . A
prefix of an instance (G, x) is an instance (G[U ], x[U ]), where
U ⊆ V (G) (note that, in particular, G[U ] is connected). We
say that a language L is hereditary if every prefix of every
instance (G, x) ∈ L is also in L. Coloring and AMOS
are clearly hereditary languages. As another example of an
hereditary language, consider a family G of hereditary graphs,
i.e., that is closed under vertex deletion; then the language
{(G, ε) | G ∈ G} is hereditary. Examples of hereditary graph
families are planar graphs, interval graphs, forests, chordal
graphs, cographs, perfect graphs, etc. Theorem 3.3 below
asserts that, for hereditary languages, randomization does not
help if one imposes that p2 + q > 1, i.e, the “no” success
probability is larger than one minus the square of the “yes”
success probability.

Theorem 3.3: Let L be an hereditary language and let t



be a function of triples (G, x, Id). If L ∈ BPLD(t, p, q)
for constants p, q ∈ (0, 1] such that p2 + q > 1, then
L ∈ LD(O(t)).

Proof: Let us first give an informal sketch. The proof
of the theorem consists in proving the correctness of a
deterministic algorithm that decides L in time O(t). Given
an instance (G, x), the proposed deterministic algorithm D
operating at a node v collects the topological information and
inputs from the ball BG(v) of radius O(t) around v, and
outputs “yes” at v if and only if BG(v) ∈ L. (Some care
is needed here, since v might not know the time bound t, and
therefore, collecting information from a ball of radius O(t)
might potentially be problematic; we ignore this technicality
in this informal sketch.) In proving the correctness of the
deterministic algorithm D, one direction is immediate: the fact
that the given language L is hereditary implies that if we start
with a legal instance, that is, (G, x) ∈ L, then every sub-
instance of (G, x) also belongs to L, hence in algorithm D,
each node outputs “yes”. The difficult task is to show that one
can choose the constant factor hidden in the O(t) notation,
such that for any initial illegal instance, there exists a ball of
radius O(t) around some node v, such that the sub-instance
of (G, x) induced by this ball is not in L. Hence, for any
instance (G, x) /∈ L, there would exist a node v, such that
under algorithm D, node v outputs “no”.

Towards this goal, we first establish Lemma 3.4, which
informally states that the union of two legal instances is also
legal if their intersection is “sufficiently large”. This crucial
structural lemma uses the fact that L ∈ BPLD(t, p, q) for
constants p, q ∈ (0, 1] such that p2 + q > 1. Specifically,
the question of how large the intersection needs to be depends
on the extent to which p2 + q− 1 is bounded away from zero.
It is interesting to note that Lemma 3.4 does not use the fact
that the given language L is hereditary.

To complete the proof, we consider an illegal instance
(G, x) /∈ L and assume by contradiction that under D each
node outputs “yes”. We then consider the largest sub-instance
U of (G, x) that is legal. This U is not empty since each node
v outputs “yes” and hence we have BG(v) ∈ L. On the other
hand, U is not the whole graph, since we assume (G, x) /∈ L.
Intuitively, if we could choose the constant factor hidden in the
O(t) notation to be large enough so that the intersection of U
and the ball BG(v) (for a node v ∈ U ) would be “sufficiently
large”, then we could have employed Lemma 3.4 and deduce
that U ∪BG(v) ∈ L. Instead, to deduce that U ∪BG(v) ∈ L,
we use a more refined argument that requires repeated use of
Lemma 3.4 on different connected sub-instances of U∪BG(v).
Finally, to obtain the contradiction we also make sure that v
is chosen close enough to the border of U , so that U ∪BG(v)
strictly contains U , thus contradicting the maximality of U .

We now turn to describe the formal proof. Let us start with
some definitions. Let L be a language in BPLD(t, p, q) where
p, q ∈ (0, 1], p2 + q > 1, and t be some function of triples
(G, x, Id). Let A be a randomized algorithm deciding L, with
”yes” success probability p and ”no” success probability q,

whose running time is at most t(G, x, Id), for every instance
(G, x) with identity assignment Id.

For v ∈ V (G), recall that Tv = Tv(G, x, Id) denotes the
maximum, over all possible coin tosses, of the running time of
v executing A, and that T = T (G, x, Id) denotes the maximum
of Tv over all nodes of G. Note that Tv ≤ T ≤ t = t(G, x, Id),
but we do not assume that any of these values is initially
known to v. The radius of a node v, denoted rv , is the maxi-
mum value of Tu over all nodes u for which v belongs to the
ball BG(u, Tu) of radius Tu around u. (Informally, BG(u, Tu)
stands for the collection of nodes that u can be possibly
“see” during the execution, hence, with this terminology, the
radius rv is the maximum running time of a node that can
potentially “see” v.) Observe that the radius rv of a node v
satisfies Tv ≤ rv ≤ t. The radius of a collection of nodes S
is rS = maxv∈S rv . In particular, rV (G) = T .

The distance distG(u, v) between two nodes of G is the
minimum number of edges in a path connecting u and v in
G. The distance between two subsets U1, U2 ⊆ V is defined
as distG(U1, U2) = min{distG(u, v) | u ∈ U1, v ∈ U2}. Fix
a constant δ such that 0 < δ < p2 + q − 1, and define

λ = 11 · dlog p/log(1− δ)e .

A separating partition of (G, x, Id) is a triplet (S,U1, U2) of
pairwise disjoint subsets of nodes such that S ∪U1∪U2 = V ,
and distG(U1, U2) ≥ λ · rS . (Observe that rS may depend on
the identity assignment and on the input; Therefore, being a
separating partition is not a property depending only on G).
Given a separating partition (S,U1, U2) of (G, x, Id), let Gk =
G[Uk∪S], and let xk be the input x restricted to nodes in Gk,
for k = 1, 2. Note that the following structural result does not
use the fact that L is hereditary.

Lemma 3.4: For every instance (G, x) with identity as-
signment Id, and every separating partition (S,U1, U2) of
(G, x, Id), we have:

(
(G1, x1) ∈ L and (G2, x2) ∈ L

)
⇒

(G, x) ∈ L.

Proof: Let (G, x) be an instance with identity assignment
Id. Assume, towards contradiction, that there exists a separat-
ing partition (S,U1, U2) of (G, x, Id), such that (G1, x1) ∈ L
and (G2, x2) ∈ L, yet (G, x) /∈ L. (Note, by the way, that
the fact that (G1, x1) ∈ L and (G2, x2) ∈ L implies that
both G1 and G2 are connected; However, for the claim to
be true, it is not required that G[U1], G[U2] or G[S] be
connected.) Given a vertex u ∈ S, we define the level of
u by `(u) = distG(U1, {u}). For an integer i ∈ [1, λrS ], let
Li denote the set of nodes in S of level i. For an integer
i ∈ (rS , (λ − 1)rS), let Si =

⋃i+rS

j=i−rS
Lj . Finally, for a set

of integers I ⊆ (rS , (λ − 1)rS), let SI =
⋃
i∈I Si. We focus

on the range of levels R = {2rS + 1, . . . , (λ− 2)rS − 1}.
For a set U ⊆ V (G), let E(G, x, Id, U) denote the event

that, when running A on (G, x) with id-assignment Id, all
nodes in U output “yes”. Define I as the set of levels i such
that the probability that some node of Si will say “no” is at



least δ. Formally,

I = {i ∈ R | Pr[E(G, x, Id, Si)] < 1− δ}.

Claim 3.5: There exists i ∈ R such that i /∈ I.

Proof: Before establishing the claim, we first note that
for specifying an execution of A on (G, x, Id) completely, it
is necessary to specify a collection Γ consisting of n sequences
of bits (resulting from random bit choices), one for each node
of G, used in that particular execution with the random choices
made by the algorithm. Denote the resulting execution, or run,
of algorithm A by Run(G, x, Id,Γ).

For proving Claim 3.5, we upper bound the size of I by
(λ−4)rS−2, which is smaller than |R| = (λ−4)rS−1. This
is done as follows. Let µ = 4rS+1. We first cover the integers
in R by at most µ sets, each of which is µ-apart, that is, the
distance between every two integers in the same set is at least
µ. Specifically, for s ∈ [1, µ] and m(S) = d(λ − 8)rS/µe,
we define the arithmetic progression Js = {s + 2rS + jµ |
j ∈ [0,m(S)]}. Observe that, as desired, R ⊂

⋃
s∈[1,µ] Js,

and Js is µ-apart for each s ∈ [1, µ]. In what follows, fix
s ∈ [1, µ] and let J = Js. Since (G1, x1) ∈ L, we know that
Pr[E(G1, x1, Id, S′)] ≥ p for every vertex set S′ in G1. Note
that SI∩J ⊆ S, and therefore SI∩J is contained in G1, so

Pr[E(G1, x1, Id, SI∩J)] ≥ p .

Observe that for i ∈ R and v ∈ Si, Tv ≤ rv ≤ rS , and hence
the Tv-neighborhood in G of every node v ∈ Si is contained
in S, which in turn is contained in G1, hence BG(v, Tv) ⊆
G1. It therefore follows that for every such v, its view in the
first Tv steps of Run(G1, x1, Id,Γ) of A is the same as in
Run(G, x, Id,Γ) of A, provided that the same sequences Γ of
random bits were used for the random choices. Subsequently,
since v halts after Tv steps of Run(G1, x1, Id,Γ), it will halt
after Tv steps of Run(G, x, Id,Γ) too. Hence

Pr[E(G, x, Id, SI∩J)] = Pr[E(G1, x1, Id, SI∩J)] ≥ p . (1)

Consider two integers i and j in J . As J is µ-
apart, |i − j| ≥ µ. Hence, the distance in G between
any two nodes u ∈ Si and v ∈ Sj is at least
2rS + 1. Thus, the events E(G, x, Id, Si) and E(G, x, Id, Sj)
are independent. It follows by the definition of I, that
Pr[E(G, x, Id, SI∩J)] =

∏
i∈I∩J Pr[E(G, x, Id, Si)] <

(1− δ)|I∩J| , where the inequality follows from the definition
of I. By (1), we have that p < (1 − δ)|I∩J| and thus
|I ∩ J | < log p/ log(1− δ).

Since R can be covered by the disjoint sets Js, for s =
1, . . . , µ, we get that the sets I ∩ Js, for s = 1, . . . , µ, form
a partition of I. As |I ∩ Js| < log p/ log(1− δ) for every s,
we have

|I| =
µ∑
s=1

|Js ∩ I| < µ(log p/ log(1− δ)) .

As a consequence, we get that (λ− 4)rS − 1 > |I|. It follows
by the pigeonhole principle that there exists some i ∈ R such

that i /∈ I, as desired. This completes the proof of Claim 3.5.

Applying Claim 3.5, let us fix i ∈ R such that i /∈ I, and
let F = E(G, x, Id, Si). By definition,

Pr[F ] ≤ δ < p2 + q − 1. (2)

Let H1 denote the subgraph of G induced by the nodes in
(
⋃i−rS−1
j=1 Lj) ∪ U1. We similarly define H2 as the subgraph

of G induced by the nodes in (
⋃
j>i+rS

Lj) ∪ U2. Note that
Si, V (H1), and V (H2) are pairwise disjoint, Si ∪ V (H1) ∪
V (H2) = V , and for any two nodes u ∈ V (H1) and v ∈
V (H2) we have dG(u, v) > 2rS . It follows that, for k =
1, 2, the Tu-neighborhood in G of each node u ∈ V (Hk)
equals the Tu-neighborhood in Gk of u, that is, BG(u, tu) ⊆
Gk. To see why, fix k ∈ {1, 2}. Given u ∈ V (Hk), it is
sufficient to show that there is no v ∈ V (H(k mod 2)+1), such
that v ∈ BG(u, Tu). To establish the latter, we observe that if
such a vertex v would exist, then dG(u, v) > 2rS , and thus
Tu > 2rS . Since there must exists a vertex w ∈ Si such that
w ∈ B(u, Tu), we would get that rw > 2rS , contradicting the
fact that w ∈ S.

For k = 1, 2, we have (Gk, xk) ∈ L, and hence
Pr[E(G, x, Id, V (Hk))] = Pr[E(Gk, xk, Id, V (Hk))] ≥ p .
Let F ′ = E(G, x, Id, V (H1) ∪ V (H2)). As the events
E(G, x, Id, V (H1)) and E(G, x, Id, V (H2)) are independent,
it follows that Pr[F ′] ≥ p2, that is Pr[F ′] ≤ 1 − p2.
Hence, combining this equation with Eqs. (2), and using
union bound, it follows that Pr[F ∨ F ′] < q. Thus,
Pr[E(G, x, Id, V (G))] = Pr[E(G, x, Id, Si ∪ V (H1) ∪
V (H2))] = Pr[F∧F ′] > 1−q, contradicting the assumption
that (G, x) /∈ L. This establishes Lemma 3.4.

Our goal now is to show that L ∈ LD(O(t)) by proving the
existence of a deterministic local algorithm D that runs in time
O(t) and recognizes L. (No attempt is made here to minimize
the constant factor hidden in the O(t) notation.) Recall that
none of t, T = T (G, x, Id), or Tv = Tv(G, x, Id) may be
known to v. Nevertheless, by inspecting the balls BG(v, 2i)
for increasing i = 0, 1, 2, . . . , each node v can compute an
upper bound on Tv , denoted T ∗v , as given by the following
claim, whose proof is deferred to the full paper.

Claim 3.6: Fix a constant c > 0, and let (G, x) be an in-
stance with an id-assignment Id. In O(t) time, each node v can
compute a value T ∗v = T ∗v (c) such that (1) c ·Tv ≤ T ∗v = O(t)
and (2) Tu ≤ T ∗v for every u ∈ BG(v, c · T ∗v ).

Given an instance (G, x) and an id-assignment Id, the
deterministic Algorithm D, applied at a node u, first calculates
T ∗u as in Claim 3.6, for c = 6λ. This can be done in
O(t) time. Subsequently, D outputs “yes” if and only if the
2λT ∗u -neighborhood of u in (G, x) belongs to L. That is,
out(u) = “yes” ⇐⇒ (BG(u, 2λT ∗u ), x[BG(u, 2λT ∗u )]) ∈ L.

Algorithm D is an O(t)-time deterministic algorithm. (Re-
call that L is (sequentially) decidable, so deciding whether
(BG(u, 2λT ∗u ), x[BG(u, 2λT ∗u )]) ∈ L can be done by every
node u.) We claim that D decides L. Indeed, since L is heredi-
tary, if (G, x) ∈ L, then every prefix of (G, x) is also in L, and



thus, every node u outputs “yes”. Now consider the case where
(G, x) /∈ L, and assume towards contradiction that by applying
D on (G, x) with id-assignment Id, every node u outputs “yes”.
Let U ⊆ V (G) be a maximal (under inclusion) set of vertices
such that G[U ] is connected and (G[U ], x[U ]) ∈ L. Obviously,
U is not empty, as (BG(u, 2λT ∗v ), x[BG(u, 2λT ∗v )]) ∈ L for
every node u. On the other hand, we have |U | < |V (G)|,
because (G, x) /∈ L.

Let u ∈ U be a node with maximal Tu such that BG(u, 2Tu)
contains a node outside U . See Figure 1 for a graphical
representation of node u, and of the sets of nodes used
further in the proof. Define the subgraph of G induced by
U ∪V (BG(u, 2Tu)) as G′ = G[U ∪V (BG(u, 2Tu))]. Observe
that G′ is connected and that G′ strictly contains U . Our goal
is to show that (G′, x[G′]) ∈ L, in contradiction with the
maximality of U .

S
U

2Tu

u

Tu*2λ

Tu*6λ W1

W2

W3

U

Fig. 1. Illustration of the several node sets used in the proof of Theorem 3.3.

Let H denote the maximal (under inclusion) graph such that
H is connected and BG(u, 2Tu) ⊂ V (H) ⊆ BG(u, 2Tu) ∪
(U ∩BG(u, 2λT ∗u )). Let W 1,W 2, . . . ,W ` be the ` connected
components of G[U ]\BG(u, 2Tu), ordered arbitrarily. Let W 0

be the empty graph, and for k = 0, 1, 2, · · · , `, define the graph

Zk = H ∪W 0 ∪W 1 ∪W 2 ∪ · · · ∪W k.

Observe that Zk is connected for each k = 0, 1, 2, · · · , `,
and that Z` = G′. We prove by induction on k that
(Zk, x[Zk]) ∈ L for every k = 0, 1, 2, . . . , `. This will
establish the contradiction since, as we mentioned before,
Z` = G′. For the basis of the induction, the case k = 0, we
need to show that (H, x[H]) ∈ L. However, this is immediate
by the facts that H is a connected subgraph of BG(u, 2λt∗u),
the instance (BG(u, 2λT ∗u ), x[BG(u, 2λT ∗u )]) ∈ L, and L is
hereditary. Assume now that we have (Zk, x[Zk]) ∈ L for
0 ≤ k < `, and consider the graph Zk+1 = Zk∪W k+1. Define
the sets of nodes S = V (Zk) ∩ V (W k+1), U1 = V (Zk) \
S, and U2 = V (W k+1) \ S.

A crucial observation is that (S,U1, U2) is a separating
partition of Zk+1. This follows from the following arguments.
Let us first show that rS ≤ T ∗u . By definition, we have
Tv ≤ T ∗u , for every v ∈ BG(u, 6λT ∗u ). Hence, in order to
bound the radius of S (in Zk+1) by T ∗u it is sufficient to
prove that there is no node w ∈ U \ BG(u, 6λT ∗u ) such that
BG(w, Tw) ∩ S 6= ∅. Indeed, if such a node w exists then
Tw > 4λT ∗u and hence BG(w, 2Tw) contains a node outside
U , in contradiction to the choice of u, based on the maximality
of Tu for this latter property. It follows that rS ≤ T ∗u .

We now claim that distZk+1(U1, U2) ≥ λT ∗u . Consider a
simple directed path P in Zk+1 going from a node x ∈ U1 to
a node y ∈ U2. Since x /∈ V (W k+1) and y ∈ V (W k+1), we
get that P must pass through a vertex in BG(u, 2Tu). Let z be
the last vertex in P such that z ∈ BG(u, 2Tu), and consider
the directed subpath P[z,y] of P going from z to y. Now,
let P ′ = P[z,y] \ {z}. The first d′ = min{(2λ − 2)T ∗u , |P ′|}
vertices in the directed subpath P ′ must belong to V (H) ⊆
V (Zk). In addition, observe that all nodes in P ′ must be in
V (W k+1). It follows that the first d′ nodes of P ′ are in S.
Since y /∈ S, we get that |P ′| ≥ d′ = (2λ − 2)T ∗u , and
thus |P | > λT ∗u . Consequently, distZk+1(U1, U2) ≥ λT ∗u ≥
λrS , as desired. This completes the proof that (S,U1, U2) is
a separating partition of Zk+1.

Now, by the induction hypothesis, we have (G1, x[G1]) ∈
L, because G1 = G[U1 ∪ S] = Zk. In addition, we have
(G2, x[G2]) ∈ L, because G2 = G[U2 ∪ S] = W k+1, and
W k+1 is a prefix of G[U ]. We can now apply Lemma 3.4
and conclude that (Zk+1, x[Zk+1]) ∈ L. This concludes the
induction proof. The theorem follows.

IV. NONDETERMINISM AND COMPLETE PROBLEMS

We first establish two simple separation results. (The proofs
use rather standard arguments, and hence, are deferred to
the full paper.) Our first separation result indicates that non-
determinism helps for local decision. Indeed, we show that
there exists a language that belongs to NLD(1) but not to
LD(t) for any t = o(n). The proof is based on the fact that the
language composed of trees cannot be decided locally (because
locally, a cycle looks like a tree). On the other hand, the fact
that the underlying graph is a tree can be verified in 1 round
using a certificate at each node v containing the distance from
v to a unique “root” node r.

The second separation result shows that nondeterminism
helps only up to a certain extent, as there exists a language
which cannot be locally and non-deterministically decided.
Basically, this language consists of graphs where each node
has a local input that equals the precise number of nodes in
the graph.

Theorem 4.1: LD(t) ⊂ NLD(t), for any t = o(n).

Theorem 4.2: There exists a language L such that L /∈
NLD(t), for any t = o(n).

For p, q ∈ (0, 1] and a function t, let us define
BPNLD(t, p, q) as the class of all distributed languages that



have a local randomized non-deterministic distributed (p, q)-
decider running in time t. We now claim that such a combina-
tion of randomization with nondeterminism enables to capture
all distributed languages.

Theorem 4.3: Let p, q ∈ (0, 1] such that p2 + q ≤ 1. For
every language L, we have L ∈ BPNLD(1, p, q).

Proof: Given an arbitrary language L, let us describe
a constant time non-deterministic (p, q)-decider for it. The
certificate of a instance (G, x) ∈ L is a map of G, with
nodes labeled by distinct integers, with labeling λ : V (G) 7→
{1, ..., n}, where n = |V (G)|, together with the inputs of
all nodes in G. In addition, every node v receives the label
λ(v) of the corresponding vertex in the map. More formally,
the certificate at node v is y(v) = (G′, x′, i), where G′ is an
isomorphic copy of G with nodes labeled by λ from 1 to n,
x′ is an n-dimensional vector such that x′[λ(u)] = x(u) for
every node u, and i = λ(v).

The verification algorithm involves checking that the in-
stance (G′, x′) is identical to (G, x). This is sufficient because
distributed languages are sequentially decidable, hence every
node can individually decide whether (G′, x′) belongs to L
or not, once it has secured the fact that (G′, x′) is the actual
instance. It remains to show that there exists a local random-
ized non-deterministic distributed (p, q)-decider for verifying
that the instance (G′, x′) is identical to (G, x), and running in
time 1.

The non-deterministic (p, q)-decider operates as follows.
First, every node v checks that it has received the input as
specified by x′, i.e., v checks wether x′[λ(v)] = x(v), and
outputs “no” if this does not hold. Second, each node v
communicates with its neighbors to check that (1) they all
got the same map G′ and the same input vector x′, and (2)
they are labeled the way they should be according to the map
G′. If some inconsistency is detected by a node, then this
node outputs “no”. Finally, consider a node v that passed the
aforementioned two tests without outputting “no”. If λ(v) 6= 1
then v outputs “yes” (with probability 1), and if λ(v) = 1 then
v outputs “yes” with probability p.

We claim that the above implements a non-deterministic dis-
tributed (p, q)-decider for verifying that the instance (G′, x′)
is identical to (G, x). Indeed, if all nodes pass the two tests
without outputting “no”, then they all agree on the map G′

and on the input vector x′, and they know that their respective
neighborhood fits with what is indicated on the map1. It
follows that (G′, x′) = (G, x) if and only if there exists at most
one node v ∈ G, whose label satisfies λ(v) = 1. Consequently,
if (G′, x′) = (G, x) then all nodes say “yes” with probability
at least p. On the other hand, if (G′, x′) 6= (G, x) then there
are at least two nodes in G whose label is “1”. These two
nodes say “yes” with probability p2, hence, the probability
that at least one of them says “no” is at least 1−p2 ≥ q. This
completes the proof of Theorem 4.3.

The above theorem guarantees that the following is well-

1(G′, x′) is actually a lift of (G, x) [3].

defined. Fix some p, q ∈ (0, 1] such that p2 + q ≤ 1, and let
BPNLD = BPNLD(1, p, q). The next corollary follows from
Theorems 4.1, 4.2 and 4.3.

Corollary 4.4: For every t = o(n), we have LD(t) ⊂
NLD(t) ⊂ BPNLD = All.

It turns out that there exist some interesting connections
between randomization and oracles, as far as nondeterministic
computing is concerned. Motivated by the numerous examples
in the literature for which the knowledge of the size of the net-
work is required to efficiently compute solutions of distributed
computing problems (cf., e.g., [25], [31], [32], [37]), we
specifically focus on the oracle providing the nodes with the
size of the graph. Roughly, we show that such an oracle gives
the same power to nondeterministic distributed computing
as randomization does. More precisely, let NLDGraphSize

be the class of languages that can be locally verified by a
distributed verification algorithm enhanced with an oracle for
GraphSize (i.e., every node has access to an oracle deciding
GraphSize). The proof appears in the full paper.

Theorem 4.5: For every language L, we have L ∈
NLDGraphSize. I.e., NLDGraphSize = BPNLD = All.

We now claim that there exists a natural problem, called
Cover, which is in some sense the “most difficult” decision
problem. Let us first define a notion of reduction that fits
with the class LD. For two languages L1 and L2, we say
that L1 is locally reducible to L2, denoted by L1 � L2, if
there exists a constant time local algorithm A such that, for
every instance (G, x) and every id-assignment Id, A produces
out(v) ∈ {0, 1}∗ as output at every node v ∈ V (G) so that
(G, x) ∈ L1 ⇐⇒ (G, out) ∈ L2 . By definition, LD(O(t)) is
closed under local reductions, that is, for every two languages
L1 and L2 satisfying L1 � L2, if L2 ∈ LD(O(t)) then
L1 ∈ LD(O(t)).

We now define the language Cover and claim that it is
BPNLD-complete. Every node v of the input graph G is given
as input a pair x(v) = (E(v),S(v)), where E(v) is an element
and S(v) is a finite collection of sets. The instance (G, x)
is in Cover if and only if there exists a node v such that
one set in S(v) equals the union of all the elements given
to the nodes. Formally, Cover = {(G, (E ,S)) | ∃v ∈
V (G), ∃S ∈ S(v) s.t. S = {E(u) | u ∈ V (G)}}. Due to the
space limitation, we defer the proof of the following theorem
to the full paper.

Theorem 4.6: Cover is BPNLD-complete.

Finally, finding an NLD-complete problem was not an easy
task. Eventually, we managed to find a natural problem, called
Containment, which is NLD(O(1))-complete. Somewhat
surprisingly, the definition of Containment is quite similar
to the definition of Cover. Specifically, as in Cover, every
node v is given as input a pair x(v) = (E(v),S(v)), where
E(v) is an element and S(v) is a finite collection of sets.
However, in contrast to Cover, the union of these inputs is in
the language Containment if there exists a node v such that
some set in S(v) contains the union of all the elements given to



the nodes. Formally, define Containment = {(G, (E ,S)) |
∃v ∈ V (G), ∃S ∈ S(v) s.t. S ⊇ {E(u) | u ∈ V (G)}}. The
proof of the theorem below is deferred to the full paper.

Theorem 4.7: Containment is NLD(O(1))-complete.

V. FUTURE WORK

This paper aims to make a first step in the direction of
establishing a complexity theory for the locality discipline. Our
model of computation, namely, the LOCAL model, focuses
on difficulties arising from purely locality issues, and abstracts
away other complexity measures. Naturally, it would be very
interesting to come up with a rigorous complexity framework
taking into account also other complexity measures. For ex-
ample, it would be interesting to investigate the connections
between classical computational complexity theory and the
local complexity one. Bounds on the (individual) running time
in each round and/or the memory used by a node may serve
as bridges for connecting the two theories. Finally, it would
be interesting to come up with a complexity framework taking
also traffic congestion into account. (This can be done by, e.g.,
considering the CONGEST model).
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